LED ACADEMY Fond d'écran
LED ACADEMY Bandeau

Traitement thérapeutique LED : Photodynamic Therapy in root canal infection control - Dr Omid MUHAMMAD - Suite PDF N° 2

Photodynamic Therapy in root canal infection control - Dr Omid MUHAMMAD - Suite PDF N° 2

Retour Nous contacter Identifiez-vous

cliquez sur les images pour les agrandir

Photodynamic Therapy in root canal infection control - Dr Omid MUHAMMAD - Suite PDF N° 2
Photodynamic Therapy in root canal infection control - Dr Omid MUHAMMAD - Suite PDF N° 2

Voir PDF N°2

 

PROGRAM & ABSTRACTS

 

Ex vivo evaluation of two photodynamic thrapy activated by laser and LED to remove artificial andodontic biofilms from root canals

Omid H. Muhammad 1,3, Jean-Paul Rocca 1,2,3, Etienne Medioni 1,2,3

1 : MICORALIS Laboratory (EA 7354), Faculté d’Ontologie, Université de Nice-Sophia Antipolis, Nice, France

2 : Pôle Odontologie, CHU Nice, France

3 : Member of University Côte d’Azur

Aim : To evaluate the ability of different photodynamic therapy (PDT) Protocols to disrupt an artificial endodontic microbial film.

 

Methodology : Thyrty extracted teeth were prepared and divided in three groups. All samples were infected with an artificially formed biofilm made of enterococcus faecalis Streptococcus salivarius, Porphyromonas gingivalis and Prevotella intermedia bacteria. The biofilm was 7 days old. First group was treated with Aseptim plus, photo-activited disinfection system (LED 635nm and toluidine blue as photo sensitizer), second group was treated by a 650nm diode Laser and Toluidine blue with a concentration of 15µg/mL 1 as photosensitizer. Ther third group, as control group, was treated using passive ultrasonic irrigation (PUI) with a 17% EDTA solution and a 2.6% NaOCI solution. The working time for all three groups was 3 min. Presence or absence of biofilm was assessed by aerobic and anaerobic cultures and controlled by SEM observation in low vacuum mode.

 

Results : There was significant difference between results obtained from groups treated by Asptim and diode Laser (P< 0,0043) in terms of bacterial load reduction. However, in cultures none of them could remove microbial biofilm totally. PUI and NaOCI and EDTA group showed the most sigificant reduction of bacterial infection (P<0,0001) and destruction of microbial biofilm.

 

Conclusions : Photodynamic therapy using a LED might reduce the bacterial load inside nan artificial infected root canal, but PDT activated by a Diode laser could not disrupt bacterial biofilms. Only passive ultrasonic irrigation using NAOCI and EDTA eradicated bacterial biofilm totally in this experiment.

 

Acknowledgements : The authors deny any conflicts of interest related to this study.